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Abstract Wedevelop a staged-structured populationmodel that describes the compet-
itive dynamics of two functionally similar, congeneric invasive species: zebra mussels
and quagga mussels. The model assumes that the population survival rates are func-
tions of temperature and turbidity, and that the two species compete for food. The
stability analysis of the model yields conditions on net reproductive rates and intrinsic
growth rates that lead to competitive exclusion. The model predicts quagga mussel
dominance leading to potential exclusion of zebra mussels at mean water tempera-
tures below 20 ◦C and over a broad range of turbidities, and a much narrower set of
conditions that favor zebra mussel dominance and potential exclusion of quagga mus-
sels at temperatures above 20 ◦C and turbidities below 35 NTU. We then construct a
two-patch dispersal model to examine how the dispersal rates and the environmental
factors affect competitive exclusion and coexistence.
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1 Introduction

Biological invasion—the spread of non-native species—is recognized as a threat to
biodiversity, ecosystem function, and regional economies (Keller et al. 2007; Pimentel
et al. 2005). Two invasive Eurasian species that have caused substantial economic and
ecological impacts in North America inland waters are the zebra mussel (Dreissena
polymorpha) and the quagga mussel (Dreissena rostriformis bugensis). Both species
are fouling pests of municipal and industrial water supply systems, thus incurring
substantial management costs (Mackie and Claudi 2010). They are also ‘ecosystem
engineers’ that can alter nutrient and contaminant cycling, habitat structure and water
quality, so that they disrupt food webs and transform biotic communities of invaded
systems (Maclsaac et al. 1992; Madenjian 1995; Ricciardi et al. 1998).

Zebra and quagga mussels possess similar morphologies, life cycles and functional
ecologies, and were apparently introduced to the Great Lakes perhaps a few years
apart during the mid-1980s (Carlton 2008; Mills et al. 1993). In both Europe and
North America, quagga mussels often replace zebra mussels as the dominant bivalve
in invaded systems over time (reviewed by Karatayev et al. 2015; Ricciardi and Who-
riskey 2004). Typically, the zebra mussel is the first dreissenid species to invade a
body of water. When quagga mussels invade the same body of water, they initially
colonize soft substrates of deepwater areas and subsequently spread into littoral zones
occupied by zebra mussels. After several years, the quagga mussel may become more
abundant than the zebra mussel system-wide and may even exclude the zebra mussel
from local areas where it was previously dominant (Ricciardi and Whoriskey 2004).
There are also bodies of water, and local habitats within bodies of water, in which
the two species either coexist, or the zebra mussel persists as the dominant mussel
(Ricciardi and Whoriskey 2004; Zhulidov et al. 2006, 2010). For example, in the
Soulanges Canal (Quebec, Canada), quagga mussels replaced the zebra mussel on
the canal bottom and on lower portions of the canal wall, but zebra mussels remain
dominant on the upper wall (Ricciardi andWhoriskey 2004). In the Don River, Russia,
both species have coexisted for over 25 years and, after replacing zebra mussels as the
dominant mussel, the proportion of quaggamussels declined into aminority (Zhulidov
et al. 2006). In portions of the Mississippi and Ohio Rivers, quagga mussels still com-
prise less than 1% of all dreissenids after a dozen years of coexistence (Grigorovich
et al. 2008). These cases suggest that patterns of relative dominance and competitive
exclusion amongst these species may vary over space and time, presumably under the
influence of environmental variables.

It is of heuristic and applied importance to understand the factors mediating such
interactions, because the two species have some significant ecological differences and
impacts (Carlton 2008; Karatayev et al. 2015). The goal of this study is to investigate
how the persistence and relative dominance of zebra and quagga mussels are mediated
by two critical factors, water temperature and turbidity, which are known to affect
dreissenid growth and abundance (bij de Vaate et al. 2014; Diggins 2001; Karatayev

123



Temperature- and Turbidity-Dependent Competitive... 355

et al. 1998). We develop a stage-structured competition population model, based on
the fecundity, survival rates and the proportion of individuals moving from the juvenile
stages to adult stages over time. In ourmodel, the population survival rates are functions
of temperature and turbidity, and the species compete for food. We use the model to
calculate net reproductive values and intrinsic growth rates. The conditions that lead
to persistence, extinction, and competitive exclusion among dreissenid species are
obtained.

Our competition model assumes that two species occupy the same environment
and compete for the same food resource. Both theoretical and numerical results indi-
cate that one species excludes the other; that is, sympatric populations of zebra and
quagga mussels cannot coexist. However, as observed in some aquatic ecosystems,
both species may coexist in the same ecosystem but different locations (Ricciardi
and Whoriskey 2004; Zhulidov et al. 2006), perhaps reflecting the influence of local
conditions in heterogeneous systems. This motivates us to extend the single-patch
model to a two-patch dispersal model by including two patches of different environ-
mental conditions. Populations in different patches are connected and interact with
each other through juvenile dispersal. Based on the two-patch competition model, we
examine how different dispersal rates and environmental factors affect the competitive
outcomes. The numerical results indicate that indeed the two-patch dispersal model
allows for both coexistence and competitive exclusion outcomes.

The rest of the paper is organized as follows. InSect. 2,wedevelop a stage-structured
model that describes the competitive interactions between zebra and quagga mussels.
In Sect. 3, we present a qualitative analysis for the model. We analyze the existence
and stability of extinction and coexistence equilibria. In Sect. 4, we connect the model
to data via model parameterization. In Sect. 5, the results of model parameterization
are used to numerically calculate exclusion results. In Sect. 6, we construct a two-
patch competition model and show some numerical results. Finally a brief discussion
section completes the paper.

2 A Dreissenid Mussel Competition Model

We begin by formulating a stage-structured competition model based on the shared
life cycle of zebra and quagga mussels. Like many aquatic organisms, zebra (Z ) and
quagga (Q) mussels have a sessile adult (a) stage that reproduces annually and a
juvenile ( j) stage that disperses before setting and can be represented as follows:

where s jz and saz are the basal survival rates for juvenile and adult zebra mussels,

respectively, bz is the number of juveniles produced per adult, and ϕ is a function
accounting for density-dependent survival of juvenile and adults. A stage-structured
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model that describes the temperature- and turbidity-dependent competitive interactions
between zebra and quagga mussels is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z j (t + 1) = bz Za(t)ϕ(t)

Za(t + 1) = [s jz (T, τ )Z j (t) + saz (T, τ )Za(t)]ϕ(t)
Q j (t + 1) = bq Qa(t)ϕ(t)

Qa(t + 1) = [s jq (T, τ )Q j (t) + saq (T, τ )Qa(t)]ϕ(t),

(1)

where Z j (t) and Za(t) are the number of juvenile zebra mussels and the number
of adult zebra mussels, respectively at time t , Q j (t) and Qa(t) are the number of
juvenile quagga mussels and the number of adult quagga mussels, respectively at
time t , bq is the number of juvenile quagga mussels produced per adult, s jq and saq
are the basal survival rates for juvenile and adult quagga mussels, respectively. The
population survival rates are functions of temperature (T ) and turbidity (τ ). ϕ(t) is a
density-dependent survival term due to competition for resources.

Next, we derive a specific expression of the survival term ϕ(t). We assume that
individuals compete for food [for example, model simulations link population changes
to food limitation in Strayer andMalcom (2006)].We use F(θ, t) to represent the food
level at time θ (0 ≤ θ < 1) in year t . A balance equation for food resource is given
by

dF

dθ
= F0 − γ F −

[
c jz Z

j (t) + caz Z
a(t) + c jq Q

j (t) + caq Q
a(t)

]
F, (2)

where F0 represents the food input, γ denotes the food decay rate, the food consump-
tion rates by the populations are modeled according to the Law of Mass Action and
are proportional to both the population levels and the food level, where c jz , caz , c

j
q ,

and caq represent the consumption coefficients by juvenile zebra mussels, adult zebra
mussels, juvenile quagga mussels, and adult quagga mussels, respectively.

Setting dF/dθ = 0, we obtain the stable food level

F̄(t) = F0

γ + c jz Z j (t) + caz Z
a(t) + c jq Q j (t) + caq Q

a(t)
.

We assume that the survival rate of juvenile zebra mussels, denoted by S j
z (t),

depends linearly on the stable food level, that is,

S j
z (t) = k j

z F̄(t) = k j
z F0

γ + c jz Z j (t) + caz Z
a(t) + c jq Q j (t) + caq Q

a(t)

= k j
z F0/γ

1 + 1
γ

[
c jz Z j (t) + caz Z

a(t) + c jq Q j (t) + caq Q
a(t)

] .

Admittedly, our assumption of linearity is probably simplistic. Mussel survivorship to
food limitation may involve threshold effects (Strayer and Malcom 2006).
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We let the basal survival rate of juvenile zebra mussels s jz = k j
z F0/γ and the

survival term due to competition for food

ϕ(t) = 1

1 + 1
γ

[
c jz Z j (t) + caz Z

a(t) + c jq Q j (t) + caq Q
a(t)

] . (3)

Studies on functionally similar marine mussels demonstrate that mussel growth may
be severely impeded by crowding, especially amongst small individuals (Frechette
et al. 1992). Moreover, larger individuals have higher filtration capacities (Horgan and
Mills 1997) and therefore a food acquisition advantage. We refer to c jz /γ , caz /γ , c

j
q/γ ,

and caq/γ as the competitive abilities of juvenile zebra mussels, adult zebra mussels,
juvenile quagga mussels, and adult quagga mussels, respectively. We assume that the
competitive abilities are proportional to a phenotypic trait �

j
z , �az , �

j
q , and �aq , which

we take to be the shell lengths of juveniles and adults of both species, hence we let
c jz /γ = β�

j
z , caz /γ = β�az , c

j
q/γ = β�

j
q , and caq/γ = β�aq , where β is the competition

coefficient that is assumed to be the same for each species and life-history stage. Hence
variation in competitive ability among species and stages is accounted for in �

j
z , �az ,

�
j
q and �aq . Thus, we choose the following modified Beverton-Holt density-dependent
survival term ϕ(t) in (1)

ϕ(t) = 1

1 + β
[
�
j
z Z j (t) + �az Z

a(t) + �
j
q Q j (t) + �aq Q

a(t)
] . (4)

The authors of Baldwin et al. (2002) conducted laboratory studies to compare the
growth, survival, and feeding biology of zebra and quagga mussels and found no
significant differences in per capital clearance rate, functional responses, or feeding
behavior between zebra and quagga mussels. This is consistent with our assumption
that both species have the same survival term ϕ(t) due to competition for food. For
simplicity we assume a mass-action functional response in (2) and (3). Moreover,
Baldwin et al. (2002) found that at a low food level the assimilation efficiency of
quagga mussels was significantly higher than that of zebra mussel. We incorporate
this in (3) by assuming that assimilation efficiencies are proportional to their shell
lengths. The results of model parameterization in Sect. 4 shows that the average shell
length of quagga mussels is longer than that of zebra mussels.

3 Model Analysis

To simplify the problem and facilitatemodel analysis, in this sectionwe set s jz (T, τ ) =
s jz , and similar notations for other survival rates. We rescale the system (1) as follows.
Let

Z̃ j = β�
j
z Z j , Z̃ a = β�az Z

a, Q̃ j = β�
j
q Q j , Q̃a = β�aq Q

a,

b̃z = �
j
z

�az
bz, b̃q = �

j
q

�aq
bq , s̃ jz = �az

�
j
z
s jz , s̃ jq = �aq

�
j
q
s jq , s̃az = saz , s̃aq = saq .

(5)
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Dropping the tildes for notational simplicity, we rewrite the system (1) in the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Z j (t + 1) = bz Za(t)
1+Z j (t)+Za(t)+Q j (t)+Qa(t)

Za(t + 1) = s jz Z j (t)+saz Z
a(t)

1+Z j (t)+Za(t)+Q j (t)+Qa(t)

Q j (t + 1) = bq Qa(t)
1+Z j (t)+Za(t)+Q j (t)+Qa(t)

Qa(t + 1) = s jq Q j (t)+saq Q
a(t)

1+Z j (t)+Za(t)+Q j (t)+Qa(t)
.

(6)

Note that the model (6) has a trivial equilibrium E0 = (0, 0, 0, 0) at which both
species become extirpated. The associated linearized system of model (6) at E0 is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z j (t + 1) = bz Za(t)

Za(t + 1) = s jz Z j (t) + saz Z
a(t)

Q j (t + 1) = bq Qa(t)

Qa(t + 1) = s jq Q j (t) + saq Q
a(t).

(7)

Thus, in the absence of competition, system (7) describes the dynamics of two species
that do not interact with each other. The first two difference equations of (7) for zebra
mussels are expressed in matrix form as:

(
Z j (t + 1)
Za(t + 1)

)

=
(

0 bz
s jz saz

) (
Z j (t)
Za(t)

)

:= M

(
Z j (t)
Za(t)

)

.

The dominant eigenvalue of the projection matrix M is the intrinsic growth rate
(Caswell 2001; Cushing and Zhou 1994; Cushing 1998) of zebra mussels, denoted by
rz . Hence,

rz = saz +
√

(
saz

)2 + 4bzs
j
z

2
. (8)

Similarly, we denote the intrinsic growth rate of quagga mussels by rq , then

rq =
saq +

√
(
saq

)2 + 4bqs
j
q

2
. (9)

To calculate the net reproductive value, we divide the projection matrix M into
transition and fecundity components, M = T + F , where

T =
(

0 0
s jz saz

)

and F =
(
0 bz
0 0

)

.

The net reproductive value for zebra mussels, denoted by Rz
0, is the positive, simple,

and strictly dominant eigenvalue of the next generation matrix F(I − T )−1 (Caswell
2001; Cushing and Zhou 1994; Cushing 1998). Thus, we have
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Rz
0 = bzs

j
z

1 − saz
. (10)

Similarly, the net reproductive value for quagga mussels is given by

Rq
0 = bqs

j
q

1 − saq
. (11)

It is well known that rz = 1 if and only if Rz
0 = 1. The population grows when rz

and Rz
0 are greater than 1 and shrinks when rz and Rz

0 are less than 1. Similar results
hold for rq and Rq

0 .
In the rest of this section, we study the existence and the local stability of the

equilibria of the nonlinear model (6). As we will see, all conditions on the existence
and stability are given by the values of the population growth rates, rz and rq , or the net
reproductive values, Rz

0 and Rq
0 , which are determined by the linearized system (7).

3.1 Existence of Equilibria

To investigate the long-term behavior of system (6), we look for the steady states
(equilibria) where neither, one, or both species survive. An equilibrium of system (6)
is a nonnegative solution of the equilibrium system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Z j = bz Za

1+Z j+Za+Q j+Qa

Za = s jz Z j+saz Z
a

1+Z j+Za+Q j+Qa

Q j = bq Qa

1+Z j+Za+Q j+Qa

Qa = s jq Q j+saq Q
a

1+Z j+Za+Q j+Qa .

(12)

We first consider the existence of boundary equilibria. Clearly, system (12) always
has a trivial solution (0, 0, 0, 0). Hence, system (6) always has an extirpation equilib-
rium E0 = (0, 0, 0, 0).

Denote a zebra-only equilibrium by E1 = (Z j∗ , Za∗ , 0, 0). Then (Z j∗ , Za∗) is a pos-
itive solution of the subsystem

⎧
⎨

⎩

Z j = bz Za

1+Z j+Za

Za = s jz Z j+saz Z
a

1+Z j+Za .
(13)

From the first equation of (13), we see that

1 + Z j + Za = bz Za

Z j
. (14)

Substituting (14) into the second equation of (13), we obtain
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s jz

(
Z j

Za

)2

+ saz
Z j

Za
− bz = 0. (15)

This quadratic equation with respect to Z j/Za has only one positive solution

Z j

Za
=

√
(
saz

)2 + 4bzs
j
z − saz

2s jz
:= ξ1. (16)

Substituting Z j = ξ1Za into the first equation of (13), we have

bz − ξ1 = ξ1(1 + ξ1)Z
a . (17)

Since ξ1(1+ξ1) > 0, (17) has a positive solution Za∗ = (bz−ξ1)/[ξ1(1+ξ1)Za] if and
only if bz −ξ1 > 0. Simple calculation shows that bz −ξ1 > 0 is equivalent to Rz

0 > 1.

Thus, when Rz
0 > 1, system (6) has a boundary equilibrium E1 = (Z j∗ , Za∗ , 0, 0)with

Z j∗ = bz − ξ1

1 + ξ1
and Za∗ = bz − ξ1

ξ1(1 + ξ1)
.

Similarly, when Rq
0 > 1, system (6) has a boundary equilibrium E2 =

(0, 0, Q j∗, Qa∗) with

Q j∗ = bq − ξ2

1 + ξ2
and Qa∗ = bq − ξ2

ξ2(1 + ξ2)
,

where

ξ2 =

√
(
saq

)2 + 4bqs
j
q − saq

2s jq
.

(Note that Rq
0 > 1 is equivalent to bq > ξ2.)

Next,we discuss the existence of an interior equilibrium,which is a positive solution
of system (12). From the first equation of (12), we see that

1 + Z j + Za + Q j + Qa = bz Za

Z j
. (18)

Substituting (18) into the second equation of (12), again we obtain (15) and (16).
Similarly, from the third and fourth equations of (12) it follows that Q j/Qa = ξ2.

Substituting this and (16) into the first and third equations of system (12), we have

{
bz
ξ1

− 1 = (1 + ξ1)Za + (1 + ξ2)Qa

bq
ξ2

− 1 = (1 + ξ1)Za + (1 + ξ2)Qa .
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Table 1 Existence of equilibria of system (6)

Conditions Equilibria Biological interpretations

Rz
0 < 1, Rq0 < 1 E0 = (0, 0, 0, 0) At E0, both species extirpate

Rz
0 > 1, Rq0 < 1 E0, E1 = (Z j∗ , Za∗ , 0, 0) At E1, zebra excludes quagga

Rz
0 < 1, Rq0 > 1 E0, E2 = (0, 0, Q j∗, Qa∗) At E2, quagga excludes zebra

Rz
0 > 1, Rq0 > 1, bz/ξ1 = bq/ξ2 E0, E1, E2, E3 = (Z j

	 , Za
	 , Q j

	 , Qa
	 ) At E3, both species coexist

Note that (13) has a positive solution if and only if bz/ξ1 = bq/ξ2 > 1. (Note that
bz/ξ1 > 1 is equivalent to Rz

0 > 1 and bq/ξ2 > 1 is equivalent to Rq
0 > 1.) Thus,

when the conditions Rz
0 > 1, Rq

0 > 1, and bz/ξ1 = bq/ξ2 are satisfied, system (6) has

a positive equilibrium E3 = (Z j
	 , Za

	 , Q j
	, Qa

	) that satisfies Z
j
	 + Za

	 + Q j
	 + Qa

	 =
1 − bz/ξ1. Note that if E3 exists, then it is not unique and there is a continuum of
interior equilibrium. However, an interior equilibrium of system (6) does not exist in
practice because the necessary condition bz/ξ1 = bq/ξ2 rarely holds in reality.

Based on the above discussion, we summarize the existence of equilibria and cor-
responding conditions required in Table 1.

3.2 Stability of Equilibria

To analyze the stability of an equilibrium, we may use the Jacobian matrix. Setting

ψ(t) = 1

1 + Z j (t) + Za(t) + Q j (t) + Qa(t)
,

the Jacobian of (6) is

J =
(J11 J12
J21 J22

)

,

with

J11 =
( −bz Zaψ2 bzψ − bz Zaψ2

s jz ψ − s jz Z jψ2 − saz Z
aψ2 −s jz Z jψ2 + saz ψ − saz Z

aψ2

)

,

J12 =
( −bz Zaψ2 −bz Zaψ2

−(s jz Z j + saz Z
a)ψ2 −(s jz Z j + saz Z

a)ψ2

)

,

J21 =
(

−bq Qaψ2 −bq Qaψ2

−(s jq Q j + saq Q
a)ψ2 −(s jq Q j + saq Q

a)ψ2

)

,
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and

J22 =
(

−bq Qaψ2 bqψ − bq Qaψ2

s jqψ − s jq Q jψ2 − saq Q
aψ2 −s jq Q jψ2 + saqψ − saq Q

aψ2

)

.

If at least one of the net reproductive values is less than 1, we could make the
following conclusions regarding the stability of equilibria.

Theorem 1 i) If Rz
0 < 1 and Rq

0 < 1, then the extirpation equilibrium E0 is globally
asymptotically stable.

ii) If Rz
0 > 1 and Rq

0 < 1, then E0 is unstable and the zebra-only equilibrium E1 is
locally asymptotically stable.

iii) If Rz
0 < 1 and Rq

0 > 1, then E0 is unstable and the quagga-only equilibrium E2
is locally asymptotically stable.

Proof i) At E0, both species become extirpated, and the Jacobian is

J (E0) =

⎛

⎜
⎜
⎝

0 bz 0 0
s jz saz 0 0
0 0 0 bq
0 0 s jq saq

⎞

⎟
⎟
⎠ .

Notice that since 2 × 2 matrix in the left-upper corner of the matrix J (E0) is non-
negative, irreducible, and primitive, the famous Perron-Frobenius Theorem implies
that it has a positive, simple, and strictly dominant eigenvalue λ1. Since Rz

0 < 1,
we have λ1 < 1. Similarly, the 2 × 2 matrix in the right-lower corner of the
matrix J (E0) has a positive, simple, and strictly dominant eigenvalue λ2 < 1.
Hence, the matrix J (E0) has a dominant eigenvalue λ = max{λ1, λ2} < 1. It fol-
lows from Elaydi (2010) (Corollary 3.24, p.145) that limt→∞(J (E0))

t = 0. Let
X(t) = [Z j (t), Za(t), Q j (t), Qa(t)]T . Then from (6),wefind that for any initial value
X(0) ≥ 0, we have 0 ≤ X(1) ≤ J (E0)X(0), where the vector and matrix inequal-
ities hold componentwise. Repeating this gives 0 ≤ X(t) ≤ (J (E0))

tX(0). Since
limt→∞(J (E0))

t = 0, we obtain limt→∞ X(t) = 0. Therefore, E0 = (0, 0, 0, 0) is
globally asymptotically stable.

ii) If Rz
0 > 1, the dominant eigenvalue of the matrix J (E0) is greater than 1, hence

E0 is unstable. At the zebra-only equilibrium E1, where zebra mussels replace quagga
mussels, the Jacobian is

J (E1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−bz Za∗(
1+Z j∗+Za∗

)2

bz
(
1+Z j∗

)

(
1+Z j∗+Za∗

)2
−bz Za∗(

1+Z j∗+Za∗
)2

−bz Za∗(
1+Z j∗+Za∗

)2

s jz +
(
s jz −saz

)
Za∗

(
1+Z j∗+Za∗

)2

saz +
(
saz −s jz

)
Z j∗

(
1+Z j∗+Za∗

)2

−
(
s jz Z

j∗+saz Z
a∗
)

(
1+Z j∗+Za∗

)2

−
(
s jz Z

j∗+saz Z
a∗
)

(
1+Z j∗+Za∗

)2

0 0 0 bq

1+Z j∗+Za∗
0 0

s jq

1+Z j∗+Za∗

saq

1+Z j∗+Za∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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To prove that E1 is locally asymptotically stable, we show that the eigenvalues of the
matrix J (E1) are less than 1 in magnitude. Denote the 2 × 2 matrix in the upper
left corner and the 2 × 2 matrix in the lower right corner of J (E1) by J11(E1) and
J22(E1), respectively. Then it suffices to show that the eigenvalues of both J11(E1)

and J22(E1) are less than 1 in magnitude.
We first show that the eigenvalues of J11(E1) are less than 1 in magnitude. By

Jury test for stability of a discrete-time system, we need to show that the following
inequalities hold [see Theorem 2.37 and Eq. (4.3.9) in Elaydi 2010]:

⎧
⎨

⎩

1 − tr(J11(E1)) + det(J11(E1)) > 0
1 + tr(J11(E1)) + det(J11(E1)) > 0
det(J11(E1)) < 1,

(19)

or, equivalently,

|tr(J11(E1))| < det(J11(E1)) + 1 < 2. (20)

Simple calculation gives

det(J11(E1)) =
−bz Za∗

[
saz +

(
saz − s jz

)
Z j∗

]
− bz

(
1 + Z j∗

) [
s jz +

(
s jz − saz

)
Za∗

]

(
1 + Z j∗ + Za∗

)4

= −bzs
j
z − bzs

j
z Z

j∗ − bzs
j
z Za∗

(
1 + Z j∗ + Za∗

)4

= − bzs
j
z

(
1 + Z j∗ + Za∗

)3 < 0 < 1. (21)

Thismeans that the third inequality in (19) is true. Also, det(J11(E1)) < 0 implies that
the two eigenvalues ofJ11(E1) are real and of opposite sign. In what follows, we show
that the first and second inequalities in (19) are true. Note that E1 = (Z j∗ , Za∗ , 0, 0)
satisfies (see (13))

⎧
⎨

⎩

bz Za∗ = Z j∗
(
1 + Z j∗ + Za∗

)

s jz Z
j∗ + saz Z

a∗ = Za∗
(
1 + Z j∗ + Za∗

)
.

(22)

Solving (22) for Z j∗ + Za∗ , we obtain

Z j∗ + Za∗ = saz +
√

(
saz

)2 + 4bzs
j
z

2
− 1 = rz − 1. (23)
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Thus, we have

tr (J11 (E1)) =
−bz Za∗ + saz +

(
saz − s jz

)
Z j∗

(
1 + Z j∗ + Za∗

)2

=
−Z j∗

(
1 + Z j∗ + Za∗

)
+ saz

(
1 + Z j∗ + Za∗

)
− Za∗

(
1 + Z j∗ + Za∗

)

(
1 + Z j∗ + Za∗

)2

=
saz −

(
Z j∗ + Za∗

)

1 + Z j∗ + Za∗
. (24)

From (22), we also find that Z j∗ + Za∗ satisfies

bzs
j
z

(
1 + Z j∗ + Za∗

)2 + saz

1 + Z j∗ + Za∗
= 1. (25)

Using (21), (24), and (25), we obtain

1 − tr(J11(E1)) + det(J11(E1))

= bzs
j
z

(
1 + Z j∗ + Za∗

)2 + saz

1 + Z j∗ + Za∗
−

saz −
(
Z j∗ + Za∗

)

1 + Z j∗ + Za∗
− bzs

j
z

(
1 + Z j∗ + Za∗

)3

= bzs
j
z

(
1 + Z j∗ + Za∗

)2

(

1 − 1

1 + Z j∗ + Za∗

)

+ Z j∗ + Za∗
1 + Z j∗ + Za∗

> 0.

On the other hand, using (21), (23), and (24), we have

1 + tr(J11(E1)) + det(J11(E1)) > 0

⇔ 1 + saz

1 + Z j∗ + Za∗
− bzs

j
z

(
1 + Z j∗ + Za∗

)3 > 0

⇔ (
1 + saz

) (
1 + Z j∗ + Za∗

)2
> bzs

j
z

⇔ (
1 + saz

)

⎛

⎝
saz +

√
(
saz

)2 + 4bzs
j
z

2

⎞

⎠

2

> bzs
j
z

⇔ saz

√
(
saz

)2 + 4bzs
j
z > 2bzs

j
z

(
1

1 + saz
− 1

)

− (saz )
2,
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which is true. Therefore, all inequalities in (19) hold. Thus, the eigenvalues of J11 are
less than 1 in magnitude.

We now apply Jury test to the 2 × 2 matrix J22(E1). Noting that

tr(J22(E1)) = saq

1 + Z j∗ + Za∗
> 0 and det(J22(E1)) = − bqs

j
q

(
1 + Z j∗ + Za∗

)2 < 0,

we have

|tr(J22(E1))| − det(J22(E1)) − 1 = saq

1 + Z j∗ + Za∗
+ bqs

j
q

(
1 + Z j∗ + Za∗

)2 − 1

< saq + bqs
j
q − 1 < 0,

since Rq
0 = bqs

j
q /(1− saq ) < 1.Hence, the inequalities (20) hold. By the Jury test, the

eigenvalues of J22(E1) are also less that 1 in magnitude. Therefore, the eigenvalues
of J (E1) are less that 1 in magnitude, hence E1 is locally asymptotically stable.

iii) Follows by similar arguments as in ii). 	

Next, we assume that Rz

0 > 1 and Rq
0 > 1 and consider the competitive exclusion.

The following theorem indicates that when the net reproductive values of both species
are greater than 1, the species that has a higher growth rate excludes the species that
has a lower growth rate.

Theorem 2 Assume that Rz
0 > 1 and Rq

0 > 1. Concerning the system (6) we have the
following conclusions:

i) If rz > rq , then E1 is locally asymptotically stable and E2 is unstable.
ii) If rz < rq , then E2 is locally asymptotically stable and E1 is unstable.

Proof i) Since Rz
0 > 1, it follows by arguments as those in the proof of Theorem 1

that the eigenvalues of J11(E1) are less than 1 in magnitude. Also, from Theorem 1,
we see that det(J22(E1)) < 1 and

|tr(J11(E1))| − det(J11(E1)) − 1 = saq

1 + Z j∗ + Za∗
+ bqs

j
q

(
1 + Z j∗ + Za∗

)2 − 1

= saq
rz

+ bqs
j
q

(rz)2
− 1.

Similarly as shown by (25), we have that Q j∗ + Qa∗ satisfies

saq

1 + Q j∗ + Qa∗
+ bqs

j
q

(
1 + Q j∗ + Qa∗

)2 = saq
rq

+ bqs
j
q

(rq)2
= 1.
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Since rz > rq , we have

saq
rz

+ bqs
j
q

(rz)2
− 1 <

saq
rq

+ bqs
j
q

(rq)2
− 1 = 0.

Hence, |tr(J11(E1))|− det(J11(E1))− 1 < 0. Therefore, the eigenvalues of J22(E1)

are less than 1 in magnitude. Thus, E1 is locally asymptotically stable.
We now show that E2 is unstable. At the quagga-only equilibrium E2, where quagga

mussels replace zebra mussels, the Jacobian is

J (E2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 bz
1+Q j∗+Qa∗

0 0

s jz
1+Q j∗+Qa∗

saz
1+Q j∗+Qa∗

0 0

−bq Qa∗
(
1+Q j∗+Qa∗

)2
−bq Qa∗

(
1+Q j∗+Qa∗

)2
−bq Qa∗

(
1+Q j∗+Qa∗

)2

bq
(
1+Q j∗

)

(
1+Q j∗+Qa∗

)2

−
(
s jq Q

j∗+saq Q
a∗
)

(
1+Q j∗+Qa∗

)2

−
(
s jq Q

j∗+saq Q
a∗
)

(
1+Q j∗+Qa∗

)2

s jq+
(
s jq−saq

)
Qa∗

(
1+Q j∗+Qa∗

)2

saq+
(
saq−s jq

)
Q j∗

(
1+Q j∗+Qa∗

)2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We denote the 2× 2 matrix in the left-upper corner of the matrix J (E2) by J11(E2).
Then, we get

|tr(J11(E2))| − det(J11(E2)) − 1 = saz

1 + Q j∗ + Qa∗
+ bqs

j
q

(
1 + Q j∗ + Qa∗

)2 − 1

= saz
rq

+ bzs
j
z

(rq)2
− 1

>
saz
rz

+ bzs
j
z

(rz)2
− 1 = 0,

which implies that there exists an eigenvalue of J11(E2) with magnitude larger than
one. Thus, E2 is unstable.

ii) Follows by similar arguments as in i). 	

As we mentioned in Sect. 3.1, the interior equilibrium E3 hardly exists; hence we

are not interested in its stability.

4 Model Parametrization

In this section, we connect model (1) to experimental data via model parametrization.
We consider the dependence of population survival rates on temperature (T ) and
turbidity (τ ). The results of model parameteriazation are then used to illustrate the
impacts of these two abiotic variables on competitive exclusion in the next section.
Although juveniles and adults may have different sensitivities to temperature and
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turbidity, we assume that juveniles and adults have the same survival rates because
data are lacking.

4.1 Survival Rates: s jz (T, τ), saz (T, τ), s jq (T, τ), and saq (T, τ)

We assume that the survival rates for zebra mussel are continuous functions with
respect to temperature and turbidity, which are given by

s jz (T, τ ) = saz (T, τ ) = σzs
a
z (T )saz (τ )

plus our simplifying assumption that s jz = saz , where 0 < σz < 1 is a coefficient that
represents the survival rate of population under ideal circumstances (i.e., when saz (T )

and saz (τ ) reach their maximum values). Similarly, for quagga mussels, we assume
that

s jq (T, τ ) = saq (T, τ ) = σqs
a
q (T )saq (τ ),

where 0 < σq < 1.
The effects of temperatures on survival of zebra and quagga mussels in Lake Erie

were studied in Thorp et al. (1998). Therein, the maximum survival rates of zebra and
quagga mussels were estimated, which are 0.79 and 0.91, respectively. Thus, we let
σz/σq = 0.79/0.91 = 0.87, and

s jz (T, τ ) = saz (T, τ ) = 0.87σ saz (T )saz (τ ), s jq (T, τ ) = saq (T, τ ) = σ saq (T )saq (τ ).

(26)

Next, we estimate the dependence of population survival rates on temperature and
turbidity, respectively.

4.1.1 The Dependence of Survival on Temperature: s jz (T ), saz (T ), s jq (T ), and saq (T )

Thermal and turbidity tolerance limits for dreissenid survival were estimated by aver-
aging experimental and empirical data reported in the literature. These data suggest
that the lower and upper thermal threshold limits for quagga mussels are below those
for zebra mussels, and that the upper thermal limit of the quagga mussel appears to be
near 25 ◦C, whereas that of the zebra mussel is near 30 ◦C (reviewed by Mackie and
Claudi 2010). The lower threshold limits for zebra mussel survival and and quagga
mussel survival are 10 and 5 ◦C, respectively (Mackie and Claudi 2010). Based on
these threshold values, we let

s jz (10) = s jz (30) = 0. (27)
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We assume that the basal survival rate for juvenile zebra mussels are related to tem-
perature T by the quadratic logistic regression

s jz (T ) = exp(a1T 2 + a2T + a3)

1 + exp(a1T 2 + a2T + a3)
. (28)

EmployingMatlab routine LSQCURVEFIT to fit the function (28) to the data (27), we
obtain parameter estimates a1 = −0.064, a2 = 2.57, and a3 = −22.52. Therefore,
we assume that the basal survival rates for zebra mussels are related to temperature T
by

s jz (T ) = saz (T ) = exp(−0.064T 2 + 2.57T − 22.52)

1 + exp(−0.064T 2 + 2.57T − 22.52)
, (29)

plus our simplifying assumption that s jz (T ) = saz (T ).

Similarly, fitting a function (replacing z by q in (28)) for quagga mussels to the
data s jq (5) = s jq (25) = 0, we assume that the basal survival rates for quagga mussels
are related to temperature T by the quadratic logistic regression

s jq (T ) = saq (T ) = exp(−0.064T 2 + 1.93T − 11.27)

1 + exp(−0.064T 2 + 1.93T − 11.27)
. (30)

(left panel of Fig. 1).

4.1.2 The Dependence of Survival on Turbidity: s jz (τ), saz (τ), s jq (τ), and saq (τ)

Turbidity is the cloudiness or haziness of water caused by solid particles in suspension.
The instrument used for measuring it is called a nephelometer or turbidimeter, which
measures the intensity of light scattered at 90 ◦C as a beam of light passes through a
water sample. Kits such as the 2100P Hach Turbidimeter are used to measure turbidity
in nephelometric turbidity units (NTU) (Mackie and Claudi 2010). Turbidity is impor-
tant as a physiological stressor not only because energy is required to process inorganic
seston, but also because food quality is diluted by seston (Ricciardi and Whoriskey
2004). Turbidity (suspended particles) limits the filtration capacity of mussels and
imposes energetic costs (Baldwin et al. 2002; Stoeckmann 2003). Turbidity levels <

5 NTU are considered optimal for zebra mussel population growth; 5-20 NTU will
support moderate population growth; 20-80 NTU will support little growth, whereas
80 NTU are lethal and will not support long-term zebra mussel survival (Mackie and
Claudi 2010). Based on these conclusions, in a similar way as we estimate s jz (T ) in
Sect. 4.1.1, we assume that the basal survival rates for zebra and quagga mussels are
related to turbidity by the linear logistic regressions

s jz (τ ) = saz (τ ) = exp(−0.11τ + 3.65)

1 + exp(−0.11τ + 3.65)
. (31)
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Fig. 1 The dependence of survivor rates for zebra and quagga mussels on temperature (left panel) and
turbidity (right panel) (Color figure online)

As little information exists on the effects of suspended solids on quagga mussel
survival or even metabolic activities, some researchers assume that the criteria used
for zebra mussels also apply to quagga mussels (Mackie and Claudi 2010). However,
although clearance rates of zebra and quagga mussels are reduced when exposed
to natural suspended sediments of up to 12mg/L, quagga mussels maintain higher
filtration rates than similarly sized zebra mussels, regardless of season (Diggins 2001).
Moreover, quagga mussels appear to be better able than zebra mussels to process food
when it is diluted by suspended inorganic particles, as they have a higher assimilation
efficiency and lower respiration cost (Baldwin et al. 2002; Stoeckmann 2003). Thus,
we assume that the survival rates of quagga mussels are slighter higher than those of
zebra mussels, and the basal survival rates for quagga mussels are related to turbidity
τ by the linear logistic regression

s jq (τ ) = saq (τ ) = exp(−0.11τ + 4.46)

1 + exp(−0.11τ + 4.46)
(32)

(right panel of Fig. 1).

4.2 Fecundity Rates: bz and bq

Annually, female zebra mussels can produce up to a million eggs, and males produce
up to nearly 10 million sperm (Sprung 1989). Since fertilization occurs externally
in the water column, release of eggs and sperm must be concurrent. Our estimate
of fecundity is based on a mean number of eggs released by female mussels; given
variability in this parameter, we choose a number from 525 to 300,000 eggs per female
estimated in Stoeckel et al. (2004). As for the proportion of fertilized zebra mussel
eggs, authors of Potapov et al. (submitted) expect values between 0.01 and 0.1. By
assuming 1:1 female-male ratio and choosing the mean value of the above quantities,
we estimate that the number of larvae produced per adult is 4218. In Krkošek and
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Table 2 Parameter estimates for the model (1–4)

Symbols Definitions Estimate values

bz Reproduction rate of zebra mussels 4.128/year

bq Reproduction rate of quagga mussels 4.128/year

�
j
z Shell length of juvenile zebra mussels 1.25 cm

�az Shell length of adult zebra mussels 2.5 cm

�
j
q Shell length of juvenile quagga mussels 1.5 cm

�aq Shell length of adult quagga mussels 3 cm

s jz (T, τ ) Survival rate of juvenile zebra mussels See Eqs. (28), (29), and (31)

saz (T, τ ) Survival rate of adult zebra mussels See Eqs. (28), (29), and (31)

s jq (T, τ ) Survival rate of juvenile quagga mussels See Eqs. (28), (30), and (32)

saq (T, τ ) Survival rate of adult quagga mussels See Eqs. (28), (30), and (32)

Lewis (2010), 0.1% of larvae are assumed to survive to settle on the lake bottom.
Hence, we estimate that bz = 0.001 · 4218 = 4.128.

Reproduction in sympatric populations of zebra and quagga mussels was compared
in western Lake Erie (Stoeckmann 2003). The results suggest no difference in the
percentage of spawningmussels or the number of sperm released by individuals (Table
3 and Fig. 4 in Stoeckmann 2003), although zebra mussels generally released more
eggs and a greater mass of gametes than did quaggamussels. Thus, we choose bq = bz
in this study.

4.3 Shell Lengths: �
j
z , �az , �

j
q , and �aq

Adult zebra mussels typically range from 2-2.5 cm in length, whereas adult quagga
mussels may grow larger than their congeners and often exceed 3 cm in length (Mills
et al. 1993). We choose �az = 2.5 cm, �aq = 3 cm, � j

z = 1.25 cm, and �
j
q = 1.5 cm.

The parameter estimate for model (1) are listed in Table 2. Based on the above
parameter estimates, we are able to calculate the non-dimensional parameters in the
model (5–6). Observing that the non-dimensional model (5–6) has the same long-
term dynamics as the original model (1), we will make numerical simulations based
on model (5–6), instead of model (1). By doing so, we avoid having to estimate the
competition coefficient β, for which data are lacking.

5 Numerical Results

In this section, the resulting parameter estimates are used to calculate Rz
0(T, τ ),

Rq
0 (T, τ ), rz(T, τ ), and rq(T, τ ), according to (8–11), for the range of temperatures

(5 ◦C ≤ T ≤ 30 ◦C) and turbidities (0 ≤ τ ≤ 80 NTU). We assume that two species
share the same environment. We apply the results of stability analysis in Sect. 3 to
determine the competitive outcomes in terms of temperature and turbidity (Fig. 2).
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Fig. 2 Results of extirpation and competitive exclusion for different ranges of temperature and turbidity.
We choose σ = 0.5. Three points (square T = 15, τ = 20 NTU, diamond T = 15, τ = 15 NTU, cross
T = 20, τ = 15 NTU) which will be chosen as samples in Figs. 3 and 4 are marked (Color figure online)

As shown by Fig. 2, the temperature-turbidity space is divided into five regions
by the contour lines Rz

0 = 1, Rq
0 = 1, and rz = rq . In other words, these lines

divide the range of temperatures and turbidities into five environmental niches. In
the niche where the temperatures are very low or very high, or the turbidities are
high, both species become extirpated since their net reproductive values, Rz

0 and
Rq
0 , are both less than 1. In the other four niches, one species excludes the other

due to their different tolerances to temperature and turbidity. The results indicate
that quagga mussel dominance leading to potential exclusion of zebra mussels at
mean water temperatures below 20 ◦C and over a broad range of turbidities, and a
much narrower set of conditions that favor zebra mussel dominance and potential
exclusion of quagga mussels at temperatures above 20 ◦C and turbidities below 35
NTU.

The temperature-turbidity niche space over which quagga mussels are predicted to
outcompete zebramussels ismuch larger than the space inwhich they are outcompeted
by zebra mussels. This result is in accord with field observations that suggest that the
quaggamusselmore frequently dominates dreissenid communities, especially in turbid
waters (bij de Vaate et al. 2014; Zhulidov et al. 2006).

To see how one species excludes the other when the net reproductive values of both
species are greater than 1, as an example, we choose temperature T = 15 ◦C and
turbidity τ = 20 NTU (square marked in Fig. 2). Calculation shows that Rz

0 = 1.54,
Rq
0 = 3.02, rz = 1.2, and rq = 1.55. We consider the case where quagga mussels
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Fig. 3 The total population of zebra mussels Z j (t)+ Za(t) (solid line) and the total population of quagga
mussels Q j (t) + Qa(t) (dashed line). We use the results of parameter estimates in Sect. 4 and choose
T = 15 ◦C and τ = 20 NTU (square marked in Fig. 2) (Color figure online)

invade a body of water already colonized by zebra mussels, and solve the competition
model (5–6) (Fig. 3). As observed in some ecosystems, when the zebra mussel is the
first species to invade a body of water, it grows up to its carrying capacity. Once the
quaggamussel invades the same body ofwater, it will grow and becomemore abundant
than the zebra mussel, eventually the quagga mussel excludes the zebra mussel.

6 A Two-Patch Dispersal Model

The Dreissena competition model (1) assumes that both species share the same living
conditions and compete for the same resource (food). It does not consider spatial het-
erogeneity, and ignores population dispersal. Therefore, both theoretical and numerical
results support the “competitive exclusion principle”—that is, two similar species that
live in the same environment and compete for the same resources cannot coexist (Cush-
ing et al. 2004). However, it is widely believed that both species exist in ecosystems
composed of many local patches with heterogeneous environmental conditions (e.g.,
Dermott and Munawar 1993; Karatayev et al. 2014). This motivates us to extend the
single-patch model (1) to a two-patch dispersal model toward better understanding the
effects of environmental heterogeneity and dispersal on the competitive dynamics. As
we will see, the two-patch competition model does allow coexistence.

We consider an aquatic ecosystem composed of two patches, say patch 1 and patch
2. Amodel that describes the competitive dynamics of two species in these two patches
is given by

123



Temperature- and Turbidity-Dependent Competitive... 373

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z j
1 (t + 1) = [(

1 − αz
12

)
bz1Z

a
1 (t) + αz

21b
z
2Z

a
2 (t)

]
ψ1(t)

Za
1 (t + 1) =

[
s jz1Z

j
1 (t) + saz1Z

a
1 (t)

]
ψ1(t)

Q j
1(t + 1) = [(

1 − α
q
12

)
bq1Q

a
1(t) + α

q
21b

q
2Q

a
2(t)

]
ψ1(t)

Qa
1(t + 1) =

[
s jq1Q

j
1(t) + saq1Q

a
1(t)

]
ψ1(t)

Z j
2 (t + 1) = [(

1 − αz
21

)
bz2Z

a
2 (t) + αz

12b
z
1Z

a
1 (t)

]
ψ2(t)

Za
2 (t + 1) =

[
s jz2Z

j
2 (t) + saz2Z

a
2 (t)

]
ψ2(t)

Q j
2(t + 1) = [(

1 − α
q
21

)
bq2Q

a
2(t) + α

q
12b

q
1Q

a
1(t)

]
ψ2(t)

Qa
2(t + 1) =

[
s jq2Q

j
2(t) + saq2Q

a
2(t)

]
ψ2(t)

(33)

where

ψ1(t) = 1

1 + Z j
1 (t) + Za

1 (t) + Q j
1(t) + Qa

1(t)
,

ψ2(t) = 1

1 + Z j
2 (t) + Za

2 (t) + Q j
2(t) + Qa

2(t)
,

Z j
1 (t) is the number of juvenile zebra mussels in patch 1 at time t , bz1 is the num-

ber of juvenile zebra mussels produced per adult zebra mussel in patch 1, s jz1 is the
basal survival rate of juvenile zebra mussels in patch 1. αz

12 is the proportion that
juvenile zebra mussels, reproduced by adult zebra mussels in patch 1, live in patch
2 due to dispersal. Similar meanings for other notations (Z , Q represent zebra and
quagga mussels, respectively, j, a represent juveniles and adults, respectively, 1 and
2 represent patch 1 and patch 2, respectively). ψ1(t) and ψ2(t) are density-dependent
competition terms for populations living in patch 1 and patch 2, respectively.

Model (33) assumes that two species compete for food within the patch they live,
and populations living in different patches do not compete. The populations in different
patches are assumed to be connected and interact with each other through dispersal.
Clearly, if αz

12 = αz
21 = α

q
12 = α

q
21 = 0, then model (33) is decoupled into two

single-patch models in the form of (6).
We say that two species coexist in the overall ecosystem if each species eventually

exists at least one of the two patches, more precisely, if there exists a positive constant
δ such that

lim inf
t→∞ min

{
Z j
1 (t) + Za

1 (t) + Z j
2 (t) + Za

2 (t), Q
j
1(t) + Qa

1(t) + Q j
2(t) + Qa

2(t)
}

≥ δ, (34)

where we take the infimum in time, but minimize over the two population sizes.
We say that two species coexist in patch 1 if there exists a positive constant δ1 such

that

lim inf
t→∞ min

{
Z j
1 (t) + Za

1 (t), Q
j
1(t) + Qa

1(t)
}

≥ δ1. (35)
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Similarly, we say that two species coexist in patch 2 if there exists a positive constant
δ2 such that

lim inf
t→∞ min

{
Z j
2 (t) + Za

2 (t), Q
j
2(t) + Qa

2(t)
}

≥ δ2. (36)

Intuitively, if one species excludes the other in both patcheswhen the twopatches are
isolated (αz

12 = αz
21 = α

q
12 = α

q
21 = 0), then the first species excludes the second one

in both patches for any positive dispersal rates (i.e., 0 < αz
12, α

z
21, α

q
12, α

q
21 < 1) when

the two patches are connected through dispersal. We are interested in the following
question: if the two patches are isolated (αz

12 = αz
21 = α

q
12 = α

q
21 = 0), and quagga

mussels exclude zebramussels in patch 1while zebramussels exclude quaggamussels
in patch 2, then when 0 < αz

12, α
z
21, α

q
12, α

q
21 < 1, how do the dispersal rates affect

the competitive outcomes? To answer this question, we solve the two-patch dispersal
model (33) using the results of model parameterization in Sect. 4. As an example, we
consider two patches with the same turbidity level (say τ = 15 NTU) but different
temperatures (say temperatures are 15 and 20 ◦C in patch 1 and patch 2, respectively)
(diamond and cross marked in Fig. 2). Then the population survival rates can be
calculated according to (26–32). If there is no dispersal (αz

12 = αz
21 = α

q
12 = α

q
21 = 0),

calculation shows that, in patch 1, the net reproductive values of zebra and quagga
mussels are Rz

0,1 = 1.75 and Rq
0,1 = 3.25, respectively, and the intrinsic growth rates

of zebra and quagga mussels are rz,1 = 1.27 and rq,1 = 1.59, respectively. Therefore,
quagga mussels exclude zebra mussel in the patch 1 (Theorem 2). In patch 2, the net
reproductive values of zebra and quagga mussels are Rz

0,2 = 2.29 and Rq
0,2 = 2.04,

respectively, and the intrinsic growth rates of zebra and quaggamussels are rz,2 = 1.41
and rq,2 = 1.34, respectively. Therefore, zebra mussels exclude quagga mussels in
patch 2 (Theorem 2).

To see how the population dispersal affects the competitive outcome, we choose
two different dispersal rates and we plot the solutions of the model (33) (Fig. 4). From
Fig. 4, we see that different dispersal rates lead to different competitive outcomes.
When the dispersal rates are low (top row of Fig. 4), both species coexist in both
patches according to (35) and (36), although quagga mussels dominate in patch 1
and zebra mussels are more abundant in patch 2. In other words, both species co-
occur and are co-dominant. This pattern of co-dominance reflects different advantages
of each species under different environmental conditions. However, if the dispersal
rates are high (bottom row of Fig. 4), quagga mussels exclude zebra mussels in both
patches, hence quagga mussels exclude zebra mussels in the whole ecosystem, they
cannot coexist according to (34). This is because the growth rate of quagga mussels
is much higher than that of zebra mussels (rq,1 = 1.59 > rz,1 = 1.27) in patch 1,
although the growth rate of quagga mussels is slightly lower than that of zebra mussels
(rq,2 = 1.34 < rz,2 = 1.41) in patch 2. Thus, when the dispersal rates are high, the
two patches are strongly connected, quagga mussels will ultimately exclude zebra
mussels in the whole ecosystem.

We complete this section by making some mathematical conjectures as answers
to the above-mentioned questions. To do so, we choose the same parameters, except
αz
12, α

z
21, α

q
12, and α

q
21 as those in Fig. 4. We let αz

12 = αz
21 = α

q
12 = α

q
21 := α and
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plot the bifurcation dynamics of the two-patch dispersal model (33) with respect to
α (Fig. 5). Based on the numerical results shown by Fig. 5, we make the following
conjectures: if the two patches are isolated (αz

12 = αz
21 = α

q
12 = α

q
21 = 0), and quagga

mussels exclude zebramussels in patch 1while zebramussels exclude quaggamussels
in patch 2, then there exists a positive constant α ∈ (0, 1) such that: 1) Both species
coexist in both patches when 0 < α < α. 2) Zebra mussels exclude quagga mussels
in both patches if α > α and rz,1 + rz,2 > rq,1 + rq,2. 3) Quagga mussels exclude
zebra mussels in both patches if α > α and rq,1 + rq,2 > rz,1 + rz,2.

7 Discussion

In this paper, we developed a dynamic model that describes the competitive interac-
tions between zebra and quagga mussels. The stability analysis of the model yields
the conditions on net reproductive rates and intrinsic growth rates that lead to either
extirpation of both species or the dominance of one species coupled with the poten-
tial competitive exclusion of the other. We then estimated the model parameters by
connecting the model to experimental data. The estimates of the dependence of the
population survival rates on temperature and turbidity result in temperature- and tur-
bidity dependent net reproductive values and intrinsic growth rates. Combining the
theoretical results and numerical ones, we plotted environmental niches in which both
species become extirpated or one species excludes the other. As predicted by “compet-
itive exclusion principle”, our single-patch model in which two species compete for
food does not lead to coexistence. Extending the single-patch model to a two-patch
dispersal model, the numerical results indicate that both competitive exclusion and
long-term coexistence may occur, depending on dispersal rates. Moreover, when both
species coexist in an ecosystem, they may dominate at different areas (Ricciardi and
Whoriskey 2004; Zhulidov et al. 2006, 2010), owing to their different sensitivities to
environmental conditions.

Based on the life cycle of the species consisting of a juveniles stage that disperses
before settling and an adult stage that reproduces annually, we developed a stage-
structured one-patch competitionmodel.On the qualitative side, unlike an unstructured
model in which all individuals in a population are treated as identical (hence all indi-
viduals have the same reproduction rate and survival rate), our stage-structuredmodels
assumed that only adults reproduce and adults and juveniles have different survival
rates. Also, we assumed that juveniles and adults have distinct competitive abilities
that are proportional to their shell length. On the quantitative side, when we connected
the model to data, we assumed that juveniles and adults have the same survival rates
because data are lacking. In reality, juveniles and adults may have different sensitivi-
ties to temperature and turbidity; therefore, more data is needed to yield more precise
quantitative results. It is worth mentioning that having stage structure is clearly crucial
in the two-patchmodel, since only juveniles disperse, in this sense, our stage-structured
two-patch model is a natural extension of the stage-structured one-patch model.

In our competitionmodel (1), we chose the same competition-induced survival term
with the same competition coefficient for different species and different stages; thus,
the resulting dynamics of the model is competitive exclusion, which is analogous to
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the classical continuous two-dimensional Lotka–Volterra model (Allen 2007) and to
its discrete version studied in Cushing et al. (2004) for the case where the nullclines
do not intersect. It is possible to obtain different dynamics, such as coexistence and
bistability, if we choose different competition coefficients for different species.

Temperature and turbidity impose important constraints on the growth and abun-
dance of zebra and quagga mussels. Here we assume that reproduction rates and
individual shell lengths are constant. More data is needed to estimate the dependence
of reproduction rates and shell lengths on temperature and turbidity. In addition, we
assume that temperature and turbidity affect the population survival rates indepen-
dently (for example, s jz (T, τ ) = s jz (T )s jz (τ )). However, there is often a complex
co-relationship between the two factors, where temperature can modify the mussel’s
response to turbidity, thereby changing its turbidity tolerance range, and turbidity can
similarly modify the effects of temperature (e.g., Karatayev et al. 1998; Thorp et al.
1998). Moreover, while this study relates competitive interactions to temperature and
turbidity, other factors (such as oxygen, calcium, and food quality and quantity) may
differentially affect the abundance and distribution of dreissenid mussels (Jones and
Ricciardi 2005; Karatayev et al. 1998; Stoeckmann 2003).

It should also be noted that the results of the effects of temperature and turbidity on
competitive exclusion are only applicable to habitats where all seasonal temperatures
and turbidities are constant or averaged, which would force the net reproductive values
to be greater than 1 or less than 1, and the intrinsic growth rate of one species is
greater than the intrinsic growth rate of another species. However, we cannot make
clear predictions on competition outcomes in habitats where temperature fluctuates
seasonally, or daily, forcing the net reproductive rates greater than 1 in one period
but less than 1 in another period. Yet, we could presume that a habitat to be more
unfavorable to a species when the seasonal fluctuations of a factor forces over a long
period of the year, and vice versa. It may be useful to incorporate the effects of short-
term and seasonal temperature fluctuations on (see Bacaeer 2009; Bacaeer and Ouifki
2007).

Steps toward further model development include the following: (1) It is most likely
that we are able to prove that the local stabilities (see Sect. 3.2) are indeed global,
by using a similar approach as in Ackleh and DeLeenheer (2008), Ackleh and Zhang
(2009). (2)Given that the two-patch dispersalmodel (33) is a system that includes eight
difference equations, the theoretical analysis of model (33) is challenging, so we leave
this for future mathematical development. 3) We also plan to extend the competition
model (1) to a spatially explicit benthic-drift model (Huang et al., accepted) for zebra
and quagga mussels in rivers, by including larval dispersal in the drift and juvenile
and adult competition on the benthos. We could conceivably use net reproductive
rate theory for source-sink dynamics (Krkošek and Lewis 2010) to understand the
interactions between growth and dispersal, environmental conditions, and river flow
in determining upstream invasion success of zebra and quagga mussels.
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